CONDENSED INTRO
 TO

TESLA TRANSFORMERS

ERIC DOLLARD

DISCLAIMIER:

> This material was written early in the project and is in need of extensive revision. Pages 1-16 result from experimental investigations and theoretical considera-. tions while at my lab in the Marconi Wireless Building (R.C.A.), at Bolinas, California, from 1980-1981. Pages 22-25 are taken from reference (2) and adapted for relation to Tesla Coil waves. Pages 25-31 are taken from reference (3) and serve as an illustration of how the Tesla Magnifying Transmitter can extract energy from the Earthis resonant electric field.

Eric P. Dollard March 22, 1986

P.O. Box $220 \star$ Bayside, California $\star 95524$ USA

THE TESLA TRANSFORMER

$$
\text { (C) } 1986 \text { EDP. DOLAND }
$$

At the turn of the century Tesla was in the process of devising a means of wireless power transmission. The transmission involved the generation of longitudinal ether waves. Whether Tesla accomplished this is not known, but the idea was considered by other notables such as Kelvin and Maxwell. Kelvin* considered it possible to generate "longitudinal waves in the luminiferous ether" thru the phenomena of displacement current (capacity current $\partial D / \partial t$). He goes on to indicate his feeling that these waves must be faster than light, as the longitudinal waves in a steel rod move with much greater velocity than the transverse waves. Tesla claims that the waves from his transformer propagate at $\pi / 2$ the velocity of light. It is interesting to note that the velocity measured on the Tesla coil is also. T/2 greater than the velocity of: light but this does appear to be a phase velocity rather thar a. group velocity. In his" writings" Tesla indicates phenomena surround the emanations from the spherical terminal capacity, and I have determined these to be true by experiment. One is that the power gradient (poynting vector) is in the same axis as the dielectric flux gradient. The other is the slow formattion of a conductive area surrounding the sphere that is not ionic in nature (in other words is not a spark or glow discharge). Contrary to popular relief, the Tesla transformer is not a *See reference 6.
steady state device but is a magnifier of transient phenomena. Also it does not behave like a L. C. network nor a transmission line, but more like a unique type of wave guide. If all parts of the system are designed properly the EMF and hence dielectric flux jumps from zero to an enormous value almost instantaneously, thereby producing an almost inconceivable displacement current into space. The transformer is then basically a device for rapidly discharging the capacitor bank nearly instantly into free space, producing an enormous dielectric shock wave similar to a sonic boom.

Because the dissipation of the transformer is for all practical purposes negligible, the energy keeps increasing at a linear rate per cycle of oscillation, thereby accumulating a gigantic quantity of electrical energy. (A form

In order for the transformer to resonate with the planet the energy storage in the active region that grows around the sphere terminal must equal the conjugate energy storage of the earth, a stiff requirement.

It is interesting to note that dielectric breakdown in this active region grow into a \log periodic form based on $x^{2}-x=1$ as the log base. This will be recognised as the trancendental PHI or the Golden Ratio. In glow discharges the ions of metallic elements form stable spheres of diameter inverse to the atomic weight of the element involved.

The transformer's principals of operation are as follows:
The first requirement is the sudden collapse of an energy field thereby producing a sudden impulse of energy, second is the

4

TESLA "COIL"

$$
i=C \frac{d e}{d t} \quad t \rightarrow 0
$$

STEINMETZ "COIL"

$$
e=\frac{L d i}{d t} \quad t \rightarrow 0
$$

FIG 16
$R=$ Resistance $\quad G=1 / R$
transforming properties of the odd harmonic ordered single wire delay line (coil) which allow for the production of enormous E.M.F. and M.M.F., and third, the dielectric phenomena surrounding the free space capacity terminal.

1) The formation of the energy impulse involves the discharge of a capacitor with the highest practical stored energy into an impedance (inductive) of the lowest practical value, and the discharge path is coupled to an energy supply through a negative resistance device. This negative resistance is classically a spark discharge, but a superior plasma device needs to be developed to enhance efficiency. Under optimal conditions the exponent of oscillation amplitude will be positive over a sustained period of time.

The net result of this system is the production of an extreme impulse of M.M.F. of great d申/dt. An alternate method is the discharge of an inductor of the highest practical stored energy into a circuit of the lowerst practical admittance, thereby producing an enormous impulse of E.M.F. of great d $\psi / d t$.
2) The energy impulse generated by the aforementioned methods is then coupled into a pair of single wire transmission systems. Through induction a strong travelling wave is formed. Due to the impedance transforming properties of the odd ($\lambda / 4,3 \lambda / 4$, etc) order line, the E.M.F. of the wave is converted into lightning magnitudes, still retaining the extreme d/dt of the initial discharge.

The capacitive discharge method of impulse generation is Tesla's fa:vorite, but Steinmetz shows that inductive discharges will also work.

The capacitor contains the initial energy of the oscillating system. The buss from the capacitors to the primary loop should have a negligible transient impedance. The capacitors should be of the bolt on vacuum type, however, the unique dielectric properties of water might be of advantage as capacitor plates. The capacitors must be in symmetrical arrangement with the primary coil. The primary must be of one turn only and exhibit the lowest practical impulse reactance $\mathbb{F}(\mathrm{P}) \mathrm{P}=\mathrm{di} / \mathrm{dt}$. Tesla indicates the proper length of the primary conductor to be $\lambda / 2=R n$, where n is a harmonic number convenient for the size of the unit and K is unspecified. Also unspecified is if this value is free osc. disconnected from the capacitors or is LC dependent.

The transmission network consists of two $\lambda / 4$ single wire transmission systems of negligible radiation loss. The first of these is called .the secondary coil. The next is called the "extra coil" by Tesla, but thenceforth will be called the "Tesia Coill". This network or Iine is typically absent in most urits: parpating to be Tesla tranformers.

The secondary cail serves as a matching network: between the wave generating primary loop and the Tesla coil. The magnetic coupling factor "k" between the PRI and SEC coils is typically 20%. Negligible magnetic coupling should exist between the secondary and Tesla coils.

The function of the secondary is three fold. The first is the transforming of the primary M.M.F. pulse into an abrupt travelling electric wave. Second, to provide a constant potential constant current transformation for good voltage regulation at the output terminal of the Tesla coil, and third is to match the drive impedance of the Tesla coil to the drive impedance of the earth. *(next page)

The secondary coil is of a low characteristic impedance of the value $g_{S}=\sqrt{z_{p} z_{4}}$. This low impedance requires it to be of high self capacity. This capacity is best facilitated by flat spiral coils of wide strip, or by short coils of wide strip, or by short coils of wide strip wound edgewise. The diameter of the secondary must be very nearly that of the primary loop.
3. Connected to this secondary coil is an additional coil, the Tesla coil. This is where the magnification properties are most pronounced. This line or coil is also $\lambda / 4$ long however, it must possess the minimum possible self capacity, resulting in the highest possible characteristic impedance, thereby facilitating the greatest possible magnification of E.M.F. by the relation $E O=Z_{i} \cdot I_{\text {in }}$.

The self capacity of the coil is minimum when the diameter is equal to length, roughly luNF per centimeter of diameter. The velocity of propagation alone this coil is $T / 2$ times the velocity of light due to the distributed shant capacity. This resaits:in pronounced capacity effects when the coil is operated higher in frequency than resonance.. It will discharge a rate much faster than the angular velocity of free oscillation, producing explosive phenomena. The self capacity of the terminal sphere brings the frequency of OSC down to that of light velocity by acting as a shunt capacitor load across the coil. There zan be considerable erergy radiation from the capacity terminal. Steinmetz equations show a power factor as high as 40% is possible.

Dielectric radiation from the Tesla coil itself must be minimized.

[^0]Fig．Ra
$\rightarrow \quad$ INPUT VOLTAGE，IMPULSE

$$
E_{i n}=\sum_{n \rightarrow \infty} A_{1} \sin \omega t+A_{3} \sin 3 \omega t+A_{5} \sin 5 \omega t+\ldots
$$

$\rightarrow \quad$ COIL GRADIENT，DISTORTED STEP

$$
E_{5}=\sum_{n \rightarrow \infty}-B_{1} \sin r_{1} x+B_{3} \sin 3 v_{3} x \Rightarrow B_{5} \sin 5 v_{5} x+\ldots
$$

\rightarrow OUTPUT VOLTAGE，DISTORTED IMPULSE

$$
\begin{aligned}
& E_{0}= \\
& \sum_{n \rightarrow \infty}-A_{1}^{\prime} z_{,} \cos \omega t+\phi_{1}-A_{3}^{\prime} z_{3} \cos 3\left(\omega t+\phi_{3}\right)-A_{5}^{\prime} Z_{5} \cos 5(\omega t+5 k)
\end{aligned}
$$

A，三 VULTAGE AMPLITUDE FACTOR，TIME
B，三 VULTAGE AMPLITUDE FACTOR，SPACE
A^{\prime}＇ミ CURRENT AMPLITUDE FACTUR，TIME．
$\omega \equiv 2 \pi F$ ，ANGULAR VELOCITY FEFREGUENCY
$V_{n} \equiv$ WAVE VELOCITY FACTOR
$\phi_{n} \equiv$ Phase Lead，function cf wave velocity
$t \equiv \operatorname{TIME}$
$X \equiv$ DISTANCE
n \＃HARMO．vic NE
Z_{n} CHARACTERISTIC IMPEDANCE OF COIL

FIG 26

$F_{0} \quad \lambda / 4$
$3 F_{0} \quad 3 \lambda / 4$
$5 F_{0} \quad 5 \lambda / 4$
$E_{\text {S }}=$ ERADIENT
EIO IN/OUT

This is achieved by concentric configuration with the primary／ secondary system therby enclosing its dielectric flux．

The potential gradient along the Tesla coil is approximately a step function due to the phase displacement of the input impulse＇s harmonics，however，the velocity of the higher ordered overtones become proportionate to frequency if the self capacity becomes significant，thereby distorting this gradient which assumes equal velocity for all overtones．

Consider the table．
Frequency Coil Length in Degrees
Input Pulse Degrees
F。 90°
$3 F$ 。
5F。
$450^{\circ}\left(+90^{\circ}\right)$
0°
7F。
$630^{\circ}\left(-90^{\circ}\right)$
0°

The harmonics of the time function impulse are all in phase， however，the hamonics of the space function are all out of phase and is therefore a step function．The coil can be considered a form of differentiator．

Hence the gradient along the coil is abrupt at the last few degrees of coil length but small elsewhere along coil（see Fig．2）． The last turns of the coil must be insulated accordingly，it would seem possible the gradient to continue to increase beyond the dielectric terminal：＊By facilitating the last few degrees in a lead from coil to terminal，the gradient can be made to appear along the lead rather than in the coil，minimizing capacity and flashove：

[^1]problems. The dielectric radiation from this lead will be small as it is immersed in the sphere's flux. No data exists as to the ratio of the size of the sphere and earth.

The complete Tesla transformer is shown in Fig. 3. The electrical length is 360 degrees at the fundamental of oscillation. The earth connection must have negligible transient impedance, a star radial system preferred. The earth terminal is the M.M.F. counterpart to the E.M.F. capacity terminal. Like the capacity terminal, it is quite possible that the magnetic gradient and force will increase as the wave penetrates the earth. Hence the 5 sections of the Tesla transformer:

1. Earth
2. Primary ststem/ power supply
3. Secondary wave coil
4. Tesla or magnification coil
5. Dielectric antenna:

It should be boIn in mind that Tesla desigmed this system for the transmission of electric waves: ${ }^{*}$..: This is hardy desirable for lab work as severe damage to unprotected apparatus and electrical interference can result. To confine the energy an image coil (180 ${ }^{\circ}$ shift) must be connected to the earth terminal. Making this arrangement in a horseshoe configuration produces intense dielectric flux and displacement current that is quite usefull for plasma work.

Due to the immense difficulties surrounding the spark device, a simple method and one of much greater control is shunt feed of the primary network by an A.M. radio transmitter of special design such as the unit at building number one. Due to the high impedance

[^2]$180^{\circ} \quad 90^{\circ} \quad . \quad$. 90° ᄀ
FIG 3

Z_{e} EARTH $\lambda_{0} / 4 n$
Z_{P} PRIMARY $\lambda / 2$
180°
\& $\lambda / 2 n^{\prime} \quad 180^{\circ} / 2 n^{\prime}$
Z_{s} secondary $\lambda / 4$
90°
\[

\left.$$
\begin{array}{lll}
Z_{T} & \text { TESLA } & \lambda_{0} / 4-\lambda_{T^{\prime}} \\
Z_{T,} & \text { LEAD } & \lambda_{T^{\prime}}=\lambda_{\delta} H
\end{array}
$$\right\} 90^{\circ}
\]

Z_{R} DIELECTRIC ANT. $\lambda / 4 n^{\circ}$?

$$
\begin{aligned}
& n, n^{\prime}, n^{\prime \prime} \equiv \text { HARMONIC NUMBERS } \\
& H \equiv \text { DELAY FACTOR } \\
& \lambda_{0} \equiv \text { WAVE LEGNTH } \\
& \lambda \equiv \text { DISTANCE } \\
& Z_{p}^{0}+Z_{S}^{0}+\left(Z_{T}^{0}+Z_{T}^{0}\right)=360^{\circ} \text { OR ONE WAVELENGTH. }
\end{aligned}
$$

FIG 4

BALANCED
COIL SYSTEM

primary

DIODE

MULTIPACTUR
DReE
offered by the primary resonator the impedance effective of the tubes must be high and therefore must operate at high anode voltages. The electron emission however, must also be high, necessitatinc large cathodes and temperatures. High anode g and large electron emissic are usually of inverse relation in available vacuum tubes. Special pulse modulator vacuum tubes must be used. Hydrogen thyratrons might operate satisfactorally at low frequencies where the 1 microsecond deionization time will not hinder comulutation. The most effective device for shunt feed may be the multipactor tube due to its stong negative resistance effects, but it is not clear if it will operate belo lөөokc with much efficiency.

By the utilization of the aforementioned devices a much improved field is devloped at the transformer output with regard to stability. This I have found desirable for the production of stable plasma formations.

However, I have not noticed the "jamming together of electrons" unless the spark method is used as the rate of rise of EMF is much greater by the spark method. Perhaps the multipactor will operate comparatively but strong impulses do not seem possible with shunt methods.

For stability of certain plasma effects AFC may be required. (See Fig. 5) The image coil system exhibits strong discriminator effects and thereby facilitates the formation of an error signal to the V.C.O.

As to physical construction the primary should be sheet copper of great conductor width and large loop area. Large surface is required as the skin effect is total with impulses. Large width also minimizes inductance allowing for larger capacitors and more

TO TRANSFORMER

AREA OF CONCENTRATED FLUX

FIG 5

- SETUP FOR PLASMA WORK -

SCOPE SHOWS SIZE OF PLASMA WITH RESPEcT TO TIMER.
rapid discharge and hence high impulse strength. In opposition to this required inductive reduction is the need for a large area due to the flashover and coupling requirements. Hence a balance has to be established between the need for minimum inductance for rapid discharge and for a large magnetic field, resulting in large inductance. The formula for inductance (rationalized) is $\mathrm{L}=a r e a / w i d t h$.

Tesla indicates that the copper weight of the secondary must equal that of the primary for maximum efficiency. This of course goes along with standard transformer theory but it must be remembered that the depth of penetration of waves into conductors is microscopic forimpulses. This copper requirement must be modified to equal surface area rather than weight. As to the use of water for capacitor conductors Tesla gives no reason. It would seem that this is done for the sake of simplicity andor is a holdover from the Leyden jar. (Remember he began this in 1890). However, water has many curious dielectric properties that may be essential in operation. By theory, for maximum discharge velocity the dielectric must be a vacuum.

Analysis (See Fig. 6)

The oscillating coil differs from the transmission line on account of turn to turn capacity and distributed mutual induction. The presence of series capacity causes the coil to respond as a capacitor network (with no inductive effect) towards abrupt impulses and angular velocities greater than the angular velocity of free oscillation.

ELEMENT OF
TESLA COIL ($d x$)
3 PATHS OF FLOW

ELEMENT OF
2 WIRE LINE ($d x$)
/ PATH OF FLOW

ELEMENT OF
WAVEGUIDE ($d x$)
1 PATH OF FLOW

THO, CIRCULAR

Fig G
$M \equiv$ MUTUAL INDUCTION
$K \equiv$ MUTUAL CAPACITY
$C \equiv$ SHUNT CAPACITY
L I SERIES INDUCTANCE

The voltage distribution along the coil at the first instant depends on the factor $a=\sqrt{C g / C s} . \quad C g=$ capacity to ground, $C s=$ capacity from end to end.

The greater ${ }^{a}$, the greater the concentration of voltage at the feed end of the coil. The maximum voltage per unit length is equal to a times the voltage of uniform distribution. a is a small fractional value with Tesla coils.

The greater the $d / d t$ or ω the greater the gradient of voltage.
If the impulse has a long tail the phenomena will be as
described but followed by a damped oscillation. (OSC)
By impressing a sustained oscillation, and if the coil
has a small dissipation constant u, the voltage will continue to increase indefinately. Initially the coil acts as a capacitor ladder network (See Fig. 7). The capacity elements are charged to nearly twice the applied E.M.F. The effective capacity being charged is $C=\sqrt{C g C s}$. Because this netwwork contains impedance elements of only one type the voltage distribution is hyperbolic rather than periodic. If $\%=$ distance/total length and e is voltage to ground at the particular distance, $e=E$. COSH a \% . For Tesla coils this distribution should be as linear as possible (small a).

As the distribution goes from initial to final the voltage can be analyzed into a complex series of decremental waves at various frequencies and wavelengths. This is accomplished by analyzing the initial distribution (hyperbolic) into space harmonics with respect to the final (DC) distribution. If a is considerable, no linear relatio exists between frequency and wave length. (See Fig. 8)

When an oscillating wave follows the initial impulse (as is the
$F / G 7$

$F / G 8$

$$
K=\frac{1}{C_{s}} \text { DARAFS }
$$

FINAL RESPONSE

$$
a=\sqrt{C K} \quad \beta=\sqrt{R G}
$$

case with the Tesla transformer) the alternate positive and negative voltages cause continuous increase in voltage and energy. The effect of the alternations is to increase the amplitude of the wave by twice the applied voltage for each alternation. Example - oscillating voltage is 1.24 times applied voltage. (initial) At each cycle this is multiplied by twice Ea, causing E to ground to increase in steps At second cycle E is 4.72 , at third E is 7.20 , etc. This effect is reduced or suppressed by large u or a

The action of the spark gap has a multiplicative effect also. Consider Steinmitz' analysis. "Continual or cumulative oscillations involve an energy supply to the system. If the energy supply is less than energy dissipation the 0 SC. damps as a transient with reduced u. If the supply equals the dissipation the OSC is continuous. If supply is greater the OSC is cumulative.

The OSC represent energy and frequency transformation from the L.F. or D.C. supply to the H.F. OSC system. This transfer may be brought about by the transient of energy readjustment resulting from a change in circuit conditions, producing again a change in circuit conditions and thereby an energy adjustment by transient, etc., etc...

Recurrent oscillations tend to run into each other and form continuous OSC. When successive transients run in to each other they tend to synch.

However, the formation of continuous OSC is not the mere overlap or running together of successive waves. The recurrent OSC cannot start until the preceding OSC has died out, and sufficient charge time has elapsed for next arc or er of gap. With overlap no dead period occurs during which normal or supply frequency is supplied. Energy then must be supplied by a phase displacement within arc

$$
F I G-9
$$

LINE ELEMENTAL

$$
d x
$$

$L=$ SELF INDUCTANCE IN HENRY
$C=$ CAPACITANCE TO GROCND IN FARADS
$K=$ INTERTERN CAPACITANCE IN DARAFS
$M=$ MutuAl inductance in (henry)
$L,=L$ PER INCH
$C_{1}=C$ PER INCH
K, $\quad K$ PER WNW

$$
u=\frac{1}{2}\left[\frac{R}{L}+\frac{G}{C}\right]
$$

$M,=M$ PER INCH

During oscillation, which gives a negative energy cycle or a reversed hysteresis loop. For continuous oscillation then, a hysteresis loop nus be formed by the lag of effect before cause." (This is negative resistance or the formation rather than the dissipation of energy.) "For the cumulative oscillation, the area of the loop must depend on and increase with the stored volt amps of the oscillating systom。"

Mathematic analysis (See Fig. 9) (See reference 2)
$e=E$ to ground $e_{s}=E$ gradient (E/inch)
By Kirchoff's Law

$$
\begin{equation*}
\frac{\partial I_{L}}{\partial x}+\frac{\partial I_{s}}{\partial x}-\frac{\partial I_{g}}{\partial x}=0 \tag{23a}
\end{equation*}
$$

$$
\text { Let } \gamma_{s}=\frac{\partial}{\partial x}=\text { space operator }
$$

$$
\text { Let } \gamma_{t}=\partial / \partial t=\text { time operator }
$$

Then

$$
I_{1}+I_{5}-I_{9}=0
$$

Differentiation of (23a) in time gives

$$
\begin{equation*}
\gamma_{s} \gamma_{t} I_{L}+\gamma_{s} \gamma_{t} I_{s}-\gamma_{s} \gamma_{t} I_{g}=0 \tag{23b}
\end{equation*}
$$

These, (23a) \& (23b) are independent of initial and final distributions of EMF.

Equation (23b) must be expressed in one variables In terms of voltage and current, the current density in capacity to ground is C_{g} per inch of coil times the rate of change of e to ground.

$$
\begin{equation*}
\gamma_{s} I_{g}=\gamma_{t} e C_{i} \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma_{s} \gamma_{t} I_{g}=\gamma_{t}^{2} \cdot C C_{1} \tag{27}
\end{equation*}
$$

I_{s} in capacity between turns equals capacity per inch times the time rate of voltage gradient.

$$
\begin{align*}
& I_{s}=\gamma_{t} e_{s} K_{1}^{-1}=\gamma_{s} \gamma_{t} e K_{1}^{-1} \tag{28}\\
& \gamma_{s} \gamma_{t} I_{s}=\gamma_{s}^{2} \gamma_{t}^{2} e K_{1}^{-1} \tag{29}
\end{align*}
$$

Relating I_{1} and voltages
The relation between magnetizing current and I_{1} is complex and defies analysis. (See Fig. 10). For the fundamental distribution ($\frac{1}{4}$ wave) the effective inductance of the coil is the space integral of the $\frac{1}{4}$ cosine wave of current of M.M.F. and is equivalent to $2 /$ times the normal total inductance. For the third harmonic, 3/4 cosine wave of current or M.M.F. the inductance of $1 / 3$ of the coil opposes the remaining inductance resulting in diminishment of self induction depending on the mutual inductance of the bucking section to the rest of the coil. The process progresses similarly for the rest of the harmonic series (5F, 7F, 9F, etc.). This results in surge impedance for each harmonic but effects tend to cancel for wave length 。 Capacitance of the coil behaves in a similar fashion and may be voltage dependent giving the coil voltage gain under the proper conditions. (Parametric amplification)

Denoting this residual inductance as leakage inductance L, and the dimensions of I^{-2} as the mutual inductance M (Henry ${ }^{-1}$), then

$$
\begin{align*}
& \gamma_{s}^{2} e_{s}=-\gamma_{t} I_{L}\left(L M_{1}\right) \tag{30a}\\
& \gamma_{s}^{3} e=\gamma_{t} I_{L}\left(L M_{1}\right) \tag{30b}
\end{align*}
$$

24

$$
\begin{aligned}
& \text { FIG } 10 \text { MAGNETIC DISTRIBUTION } \\
& \leftarrow \text { COIL } \rightarrow \\
& \underset{A}{\longrightarrow} \\
& \text { Fo } \lambda / 4 \\
& S \leadsto N \\
& \underset{\text { VECTOR }}{\text { M.M. }} \\
& \begin{array}{l}
\rightarrow+\leftarrow(\rightarrow) \\
A B C
\end{array} \\
& 3 F_{0} \quad 3 \lambda / 4 \\
& 5 f_{0} \quad 5 \lambda / 4
\end{aligned}
$$

$\lambda / 4$ m.M.F $2 / \pi$ M.M.F D.C.
$3 \lambda / 4$ m.M.F $(2 / \pi-2 / \pi+2 / \pi)$ M.M.F D.C.
5 //4 M.M.F $(2 / \pi-2 / \pi+2 / \pi-2 / \pi+2 / \pi)$ M.M.F x.

$$
L_{n}=\operatorname{INDUCTANCE}=n(M \cdot M . F)
$$

(30b) gives the value of $\gamma_{t} I_{6}$, while (23a) involves $\gamma_{s} I_{6}$. If we differentiate the former with respect to x and the latter with respect to t, substitution becomes possible.

$$
\begin{equation*}
\gamma_{s} \gamma_{t} I_{b}=\gamma_{s}^{4}\left(L M_{1}\right)^{-1} \tag{31}
\end{equation*}
$$

(31), (29) and (27) express in terms of volts the three terms of (23b).

Hence, the general equation:

$$
\begin{equation*}
\gamma_{s}^{4}=\gamma_{s}^{2} \gamma_{t}^{2}\left(L, K_{1}^{-1}\right)+\gamma_{t}^{2}(L, M, C,) \tag{33}
\end{equation*}
$$

This equation neglects losses.

Analysis of the interaction between the earth and various coils is possible by the use of velocity measure. This in general is a complex quantity consisting of real and imaginary parts.

By the relation well known:

$$
\begin{equation*}
\gamma_{s}^{2}=v^{-2} \gamma_{t}^{2} \tag{34}
\end{equation*}
$$

where v is the velocity of the wave. Then velocity is the ratio of time to space. Letting this velocity be of unit value, time and space functions become equivalent, $\gamma_{s}^{2}=\gamma_{t}^{2}$. Steinmetz gives the following instructions for accomplishing this.
"Line constants are typically given per unit length, as per centimetre, , mile, 1000 feet, etc.

The most convenient unit of length, when dealing with transients in distrabuted circuits, is the velocity unit v.

That is, choosing as unit length the distance of propagation in unit time, or 3 times $10^{10} \mathrm{~cm} / \mathrm{sec}$ for transverse waves in air, this gives $v=1$ and therefore LC $=1=\sigma$

$$
c=L^{-1} ; L=C^{-1}
$$

That is, the capacity per unit of length, in velocity measure, is inversely proportional to the inductance. In this velocity unit of length, distance will be represented by $\lambda . "$

Substituting $\sigma=1$
$t_{0}=\lambda_{0} \quad F=1 / \lambda_{0}$
Time angle $\emptyset=2 n F t=2 \pi t / X$ 。
Distance angle $w=2 n F \lambda=2 r \lambda / \lambda$ 。
Analysis of the travelling wave along Tesla coil* utilizing the light second.

The equation for standing waves on a line are as follows:
$\left.i=i_{0} \times \cos (\emptyset \mp)^{\prime}\right)$
$e=C_{0} x \operatorname{SIN}\left(\emptyset \neq i^{\prime}\right)$
u is the power dissipation constant. The power involved is:
eoio $\epsilon^{-2 u t} \operatorname{sIN} 2(\emptyset \mp \backsim)=e i$
2

Because the sineterm makes this symmetrical about zero the average power is zero. For the travelling wave:

$$
\begin{align*}
& i=i_{0} \times \cos (\emptyset=\cdots) \\
& e=e_{0} \times \cos (\emptyset \mp i v) \tag{3}
\end{align*}
$$

The power involved is :

$$
\begin{equation*}
\frac{e_{0} i_{0}}{2} e^{-2 u \tau}[1+\cos \text { (2) }(\theta 5 \pi \cdot 1) \tag{4}
\end{equation*}
$$

Power average is now:

$$
\begin{equation*}
\frac{e_{0} i_{0}}{2} \epsilon^{-2 \imath t} \tag{5}
\end{equation*}
$$

[^3]Thus two waves exist, a.travelling steady power flow given by (5) and a standing wave given by (2) such a flow of power flows along the different sections of the Tesla transformer, consisting of sections of different u. For instance the primary has very low u due to the large surfaces and the negative u of the arc, the secondary has a hịgher u due to no arc, the Tesla coil has higher yet due to the small conductor size of winding, and the dielectric antenna has a very high u due to radiation.

In the primary the duration of oscillation is very great as u is zero or negative. The duration of coil oscillation is shorter due to their higher u, and by themselves their OSC would dampen quickly. Since all are connected together, all must dampen together. It then follows that power must flow during transient from primary to antenna, so as to have all sections dampen together.

Three conditions can occur in the general compound system:
a) The power flow is uniform, that is, the power remains constant in the direction of propagation.
b) The flow decreases in the direction of propagation.
c) The flow of power increases in the direction of propagation.

This last case is of special interest in the Tesla transformer as it increases the steepness of the wavefront, producing greater displacement current.

If the flow of power increases along system, more power leaves every line element than enters it; that is, the line element is drained of its stored energy by the passage of the wave, and then dies down with time at a faster rate than by its own dissipation. That is, not all the stored energy of the line elements supplies the power dissipated in the line elements, but part of the energy leaves the elements in increasing the flow of power along the line. The
rate of dissipation thus is increased, and instead of $u, u+s$ enters the equation. That is the time decrement is:
$-(u+s) t$
θ
s is the power transfer constant.
But, inversely, along the line the power flow increases, that is, the intensity of the wave increases, by the same factor, $e^{+5 \lambda}$
or rather, the wave decreases along the line at a slower rate than that scattered by the power dissipation. Therefore, that taken from the time domain is transfered to the space or distance domain. $i=i_{0} f^{-(u+s) t} \epsilon^{+s t} \cos (\emptyset-w)$
Similar for e
P AWG is $\frac{e_{0} i_{0}}{2} \epsilon^{-2(u+s) t} \epsilon^{+2 s \lambda}$
The power transfer constant s determines the steepness of the wavefront. To meet these requirements the u of the line must exceed the average u_{0} of system.

Example (See Fig. 11):

Transformer
Length $=\boldsymbol{\lambda}$

$$
1.0 \times 10^{-3}
$$

Line
Load
in light seconds
Dissipation $=$

u	100
$u \lambda$	0.1
	$\frac{\sum u^{\prime} \lambda}{\sum \lambda}=800$

$\begin{array}{llll}\text { and } s & = & +700 & -100\end{array}$

FIG 11

XFMR $u-700$
LINE $u+100$
LOAD $u+800$

$X F M R$ u -433
LINE u - 33
1040 u - 1067

$$
\begin{aligned}
& u=\text { DISSIPATION } \\
&=\frac{1}{2} \cdot\left(\frac{R}{L}+\frac{G}{C}\right) \\
& \operatorname{TAN}^{-1} u=\text { THE CONSTANT }
\end{aligned}
$$

The transformer thus dissipates power at a rate $u=100$ but sends power at the rate of $s=700$, or seven times as much as it dissipates by internal losses. The load dissipates power at $u-1600$ and receives power at the rate $-s=800$, that is $\frac{3}{2}$ the power it dissipates is supplied from other sections, in this case the transformer,

The transmission line dissipates power at the rate of $u=900$ only a little faster than the system u_{0} of 800 ; and the line receives power at $-S=100$, that is, receives only $1 / 9$ of its power from the transformer; the rest comes from its stored energy.

For the special condition of waves increasing in magnitude towards lead;

That is the power transfer constant of the line has become positive $S=33$ and the line now assists the transformer is supplying power to the load (See Fig. 12).

The preceeding paper has attempted to show the considerations involved in the optimization of the Tesla transformer. The enormous number of factors involved make this a difficult task indeed: The authors of coil analysis have come up with conflicting results and an attempt towards resolve has been. made. Solutions to the differential equations have not been given due to lack of generality of those
available and lack of space.
It has been mentioned in papers on the subject of coil oscillations that theory does not match practice. Much more experimentation is necessary. it also might be possible that $\xrightarrow[?]{\text { Is }}$ does not give the proper velocity, remembering that Tesla claims that his velocities are faster than light. For further information see:

1. ABNORMAL VOLTAGES INTRANSFORMERS. J. M. Weed. American Institute of Electrical Engineers. Sept. 1915, p.2157.
2. ABNORMAL VOLTAGES WITHIN TRANSFORMERS. L. F. Blume. Feb. 1919, American Institute of Electrical Enginers, p. 577.'
3. ELECTRIC WAVES, DISCHARGES AND IMPULSES. C. P. Steinmetz
4. TRAVELING WAVES ON TRANSMISSION SYSTEMS. Bewley, L.V. 1938, 1951. Dover.
5. DIELECTRIC PHENOMENA IN HIGH VOLTAGE CABLES. D. M. Robinson, 1936.

6: ROENTEEN RAYS AND PHENOMENA OF THE ANODE AND CATHODE. E. P. Thompson. 1896, Van Nostrand Co., p. 93 (Kelvin), p. 136 (Tesla).

- Energy Distribution in Compound Misillation of Copen Circuit.

- Faster Than Light!

By HUGO GER.YSB.ACK

IT may come as a shock, to most students of science, to learn that there are still in the world sume scientists who believe that there are speeds greater than that of light.
Since the advent of Finstein, most sci-ntists and physicists have taken it for pranted that speeds greater than 186,800 miles per second are impnsisible in the universe. Indeed, one of the principal tenets of the relativity theory is that the mass of a body increases with its speed, and would become infinite at the velocity of light Hence a greater velocity is impossible.

Among those who deny that this is true, there is Nikols Tesk well known for his hundreds of important inventions. The induction motor and the syster of distributing alternating current are put a few of his great contributions to modern science. In 1892, he made his historic experiments in Colorado: where he manufectured, for the first time, artificial lightning bolts 100 feet long. and where he was abie, by means of high-frequency currents, to light electric lamps at a distance of three miles without the use of any wires whatsoever.
Talking to me about these experiments recently. Dr. Tesia revealed that he had made a number of surprising discoveries in the high-frequency electric field and that in the course of these experiments, he had become convinced that he propagated frequencies at speeds higher than the speed of light

In his patent No. 787.412, filed May 16, 1900, Tesla showed that the current of his transmitter passed over the earth's surface with a speed of 292,880 miles per second, while radio waves proceed with the sel-x-ity of light. Tesla holds, however, that our presen: "radio" waves are not true Hertzian waves. but really soard waves.

He informs me, further. that he know, of sjupeds several times greater than that of light, und that he has designed appuratus with which he experts to project co-called electrons with a speed ermal to twice that of light.

Coming from so eminent a source the statement should be given due consideration After all, abstract
mathematirs is ane th:ing, and actual experimentation is another. Not sn many fears apo, one of the wurld's greatest scientist, of tre time proved :nathematically. that it is impers-r!? : : H! a heavier-than-arr :amchine.

Tesla contradic:- a pert in the selativity thenry emphatically, holaing that mass is unalteeablie: otherwise, energy could be iroduced from :othing. since the kinetic enerf: ncquired in the fall of a budy would be greater than that necescery to lift it at a small velocity.

It is within the bounds of possibility that Einstein's mathermatics of speeds greater than light mas. be wrong. Tesle has been right many times during the past, and he may be proven right in the future. In any event, the staterment that there are speeds faster than light is a travendous ons and opens up entirely new ristes to science.

While it is beliered ty seny scientists, today, that the forice of gravitolion is inorely another manifestation of electropriasiutic wares, there have. as yet, heen no pronfs of this. There are, of course, many ohocure things mimut geavistion that we have not, as yet. fathomed.
At one time, it was believed br mang scienticts that the speed of grasitation is instantaneuus throuphout the universe. This is simplr ancther way of putting it that thege are speeds greater shan light.
let, from a strictly scientific viewpoint no one to day has any iden how fast graritational wavec-always providing that the force is in crareg-iravel. If the moon, fur instance, were to explude at a given moment, how long would it we imf.re the gravitationai disturbance wustd oe felt $\cdot n$ rimet Would thr frentitatinnal impulse or waves tance! at ide spreed of light--that is, 1 mo,000 miles pep evind on would the effect te instantanenus: W. do i.. iniona

The entire subject will :o dutitit armanem tre:aendous interest in scientific circle:. It is lapped that uther scientints will be encouraged to inrestgate Dr. Tesla's far-reaching aswertions; either to definitely prove or to disprove thern

No. 649,62!.
Patented May 15; 1900
N. TĖSLA.
apparatus for transmission of electrical emergy.
(Application alled Fob. 19. 1000. .
(Mo Model.)

United States Patent Office.

RIKOLת TESI.A, OF NEW YORK. N. Y

APPARATUS FOR TRANSMISSION OF ELECTRICAL ENERGY.

BPECIFICATION forming part of Letere Palant \$1a 640,021, dated Me5 15, 1000.

 E. 6.780. ' I © model.

In all whom "t may comrern:

Be it known that I, Nikola Tebla, a citizen of the U'nited States, residing at the borough of Manhatlan, in the cits of New York.
s county and Stateof Now lork, have invented certain newand useful Improvements in Ap. paratus for the Transmission of Electrical Energy, of whicb the following is a aprecification, reforence being hed to the drawing ac-

This application is a divisiox of an application filed by me on Septouber 2, je9?, Serial 2io. 650,343 , entitled "Syateme of trademisslons of oleotrical energy," and is based upon apparates shown and described in asid applipation for carrying out the method therein dieclosed and claimed.
The invention which foras the snbject of
30 my present applicalion comprises a tranaunit. tiag coli or conductorin which electrical currents or oacillations are produced and whiol is arranged to cause soeb carrents or ocillations to bo propagnted bs conduction through
25 the natural medium from one point to another remote theref rom and a receiviag coil or conductor as such distant point adapted to be excited by the oncillations or curreots propagated from the tradimittor.
ing apparatus is shown in the sccompnoy. ing drawiog, which is a diagrammatic illas. tractor of the seme.
A is a coil, poizerally of many turas and of a vory Iarge din metor, wound in spiral form as oilher aboat a magootic core or not an may be desired. C is a second coll formed by a conatiotor of much larger aize and smaller leagth wound aronnd and in proximity to the coil A.
The apparatus at-one point is used as a tranmitter, the coil A in this ease constitatiog a high-teosion, eccoadary, and the coil C the primary, of much lower teasion, of a trans. former. In the circhit of the primary C is in-
45 cluded a suitaile source of carrent G. One termianl of the cocondary A in at the ceoter of tho spiral coil, and frow tois termiaal the current is led by a conducine 13 to a ternidas I), preferably of large surface, formed or

50 :nniainized bs auch means as a balloon at an
elevation suilable for the purposes or rana. mission. Tbe other terminal of the secondary A is connected in eartb, and, if desired, to the primaryales, in order that the later may bo at nutatantially the same potortial as tho adjacent portions of the necondars, thas iusuring nafets. At the receiving-atationa transformer of similar constrnetion is employed; but in this case the longer coil A ' contatitates the primary, and the shorter coil C' 60 the cecondary, of the tradsformer. In the circuit of the lattor are coanocted larmpo L, mucon 31, or other devicen for utilizing the cur. reat. Thoalerated rorminal D' connecto with the conter of the coil \mathbf{A}^{\prime}, and the otber tor. mianal of anid coil is condected to enrth anil proforably, also, to the coil C' for the reasons -bove alated.

The loagth of the thin wire coll in each tranafori:ier should be approxirately oooquarter of the wave leogth of the electric distarbance in the circuit. this eatima'e boing hased on the velocity of propagation of the disturbance throagh the coil biacll and the circuit wilh which it is designed to be ased. By way of illustration, if the rate at which the current traverges the circuit including the coil be one hundred and eighis-li ve thonnad milen per second ther a frequencs of nice hundred and tweaty-fise per second so woald unizkin nine hendred and twonty-nve atationary mores in a oirceit one buadred and eighty- b y thousand milea long and each wave would be two bundred miles is leagth.

For soch a low frequency, which woald be 85 resorted to ooly whon it is indisperesble for the operation of motors of the ordiaary tind under the conditions above senumed, I would ase a secondary of fifty miles in length. By siach an adjustunent or proportioning of the leogth of wire in the secondary coil or coils the point of bighest poiential are made to coincide with the olovated werminals D D^{\prime}, and it mbould be understood that whatever longth be given tothe wires this requiremant gs should be complied with in order soouksia the best results.

It will be readily understood that thea tino above-prescribed relations exiat the lost con.. ditions for resodance between the trensmit- 100
ling and receiving circuits are athained, and owing to the tact that the points of highest potential in the coils or conductori A A are colucident with the elevated terminals the
5 maximan flow of current will Lake place in the tro coils, and this, further, necessarily implies that the capacity sad inductance in each of the circuits have such values as to secure the most perfect condition of syacbro-

Wi with the impresed oscillations.
When the sonres of current G is in operation and produces rapidly palating or oacillating carreate in the circnit of coil C , oorresponding induoed carrents of very much art coil A and sincethe potential in theasme gradaslly increases with the namber of turns towand the center and the diflerebce of potenfal between the adjacent turns is comparsble with ordinary coils mas be successirely obtained.

As the maiu object for which the apperatus is desigued is to produce a current of excessfacilitated by using a primary current of very considerable frequency; bit the frequency of the curreats is in a large mersure arbitrary, for if the potential be safficient!s high and the
30 terminals of the coils be inainiained at the proper elevation where the stmosphere is raretied the strait!m of air will serregsa conducting medinm for the current produced and the latter will be transmitted throngh the thmogt an ordinary condocter

As tothe elevation of the terminals $D D^{\prime}$, it is obvions that this is a matter which will be detarmined by a namber of thinge, as by the so amoant and quality of the work to be perfaraed, by the condition of the atmosplere, and also by the character of the surronnding condiry. Thas il there be high morntsing in the vicinity the terminals ahoild to at a 45 greatar hoight, and generally they should always be as an liltitade mach greater than that of the highest objects nenr them. Since by the means described practicslly any potential chat is deaired may be prodoced, the currents

redacing the loas in the air.

The apparatos at the receiving-atation reoponde to the carrento propagased from the transmittor in a manaer which will be well - ine prom lomolng description. the thin wis rents propagated bj_condaction through the iztervening astural meciiom from the trans-

* mitter, and thee currento indace in the secondary coil C' other curreats which sra atiized far operatiog the devices included in the circait thereof

Obriously the receiviug-coils, transform-
bs ers, or other apparsius may bs rovable-as, for instance, when theg are cerried by a vesvel nasting in tho arr or by abip at sea. Iul

Lbe former case tho monnection of one terminal of the receiving apparatus to the groand inight not be permanent, but might be inter- 70 initually or inductively establisbed withoat departing from the spirit of myinrention.

It is to be noted that the phenomonon here involred in the transmissiod of electrical energy is one of true conduction and is not th 75 be confonaded vith the phenomens of electrical radiation rhich have heretofore been obseryed and which from the very nature and mode of propagation ronld render practically. impresible the transmission of any apprs- So cisbla amonat of energy to such distance9 se° are of practical importanco.

What I now claim os my invention is -

1. Thecombiaation with a transmittiugcoil or condnctor connected to ground and to 8085 elerated torminal respoctively, and means for producing theroin electrical currents or oscillations, of a receiring coil or conductor similarly connected to grount sid to an elevated terminal, at a disisdes from the transinit ting-coil and adapter to be escited by cur. rents cansed to be propageted from tbo same bs conduction throu h the interinning datoral inediom, s escondary couductor in in. ductive relation to the raceiving-conductor and derices for utilizing ble current in the circuit of st.id zecondsry con:tretor, as set. forth.
2. Thecombination with a transmitlog coil or conductor havicg its ends connected to frocnd and to an olericod terminal reapectively, a primary coil in indactire relation thersto and s sonrce ol eloctrical oscillations in said primary circuit, of a receiving condac. tor or coil haring its ends connected to ground and to an elovated tominal respectively and adapted to be axciled by cnrreyts caused to bo propagated from the tranomitter through Lhe natnral mediun and a secondary circuit in inductire relation to the recoiving-circuit and recsiving devicee connected therewith. as set forth.
3. The combinstion with a transunitting insìrument comprising a trangformer haring its secondery counected to ground end to an elovated terminal reopectively, and means for impreasing electrical oecillations aponita prizary, of a receiving instrument comprising a transformer haviag its primery similarly connected to gronnd and to an elevated terminal, and a translating device connected with its necondery, the capsoity and induct ance of the two tradoformers having eoch values es to secure syachronism with the im. prased oeoillations, as set forth.
4. The comblastion with transmitting in. strument comprising an elsctical trans. former hiving its eecondary connected Lc gronnd and to an elevated termiaal reapec. tively, and means for impressing electrical oscillations opon te prtanky, of oreceiving instrament comprising a tranaformer baving its primary similerly conaeotod to ground and to an elorated tominal, and a tranaler
iog revice cenoected rith iia secondars, the eapacity and indur:tanca of the secondary of the transmitting and primary of the receiv. ing instruments hating such values as to se-
5 curesynchroaisu. with the impressed oscillalions, as eet forta.
5. Theconbinstion wich a transmitting coil or conducter connucted to ground and an elovated termioal reapectively, and means for
produciog electricsl curreate or ascillations is the anme, of a recoiviug coil or condactor afmilarly connected to ground and to an elovacod cormínal and syachronized with the transmitting coll or condactor, as set forth.
6. The combination with a Lransmitting inatroment comprising an eloctrical trans. former, having its secondary connected to groand and to an elevated torminal respectively, of a receiving instrament comprising
$s 08$ transformer, baving its primary similarly connected to ground and to an elevated termiasl, the receiving-coil being syachronized with that of the trainsmitter, as set forth.
7. The combination with a transmitting coil or coadactor connectod to groand and to 8 n elerated terminal respectively, and mesas for produciug clectrical currents or ascillations in the same, of a receiring coil or cunductor aunilarly connected to ground and to an elevated terinimal, the said coil or coils having
a length equal to unc quarier jif ti:a $\pi 3: 0$
length of the disturbance pripagated, ar: set forth
8. The cumbinstion with a! !rasmition coil or coaducher coanected to ground and to an 3 elevated triniusl sespectirels, and adspted io cause the propagation of curronts or oscillatigns by couduction threugh the natural medium, of a recrising-circait similarly connected to ground and to an elevated terminal, and of a capacity and inductance sach that its period of vibration is the asme as that of the transmitter, as set forth.
9. The transmitting or rocoiving circuit berein described, connected to ground and an elersted cermian respectively, and ar: ranged in sach manaer that the elerated tor. miusl is charged to the marimam potential developed in the circuit, ss set forth.
10. The combication witb a transmitting 50 coil or conductor congected to ground and to an elerstod terminsl respectivels of a ruceiv-ing-circuit having a period of vibration corresponding to that of the iransmittiog-circilit and similarly condected to gronnd sind to an elevated teriniual and so arranged that the elevated terminal is charged to the bigbest. poteatial developer] in the circuit, as set forth NIKOI.A TESLA.
π itnesses:
Pakker W. Page,

N. TESLA.
apfañatus foe roansmittino electrical energr.

1.119,732.

Patented Dec. 1, 1914

UNITED STATES PATENT OFFICE.

NTROLA TESLA, OF NEW YORR, NT. Y.

APPARATUS FOR TRANSMITINNG ELECTRTCNI ENERGY.

1,119.732.
Specifestion of Letters Fatent
Patented Dec. 1. 1914.
Application illed Jamary 18, 1902. Serial No. 90.245. Pezewed May 1. 1907. Sertal Io. 371.817.

Tonll rham it may roncern:
Be it known thit I. Nikola Tesla, a citizen of the Einited siates. residing in the borongh of Manhattan. in the eity, county,and sitate of New lork. have incented certain ticw and useful lmpronements in Apparatus for Transmitting lolectrical folnergy. of which the following is a specilication. ref ercase being had to the dranmg acconn

In endearoring to adapt curients or dis. charges of very high tension to various valu. able uses, as the distribution of energy. through nires from central plants to distant of porierful disturbances to great distances. through the natural or non-artiticial merlia. I have encountered dfficulties in confining considerable amounts of electricity to the conductors and preventing its leaknge over the: r suppurts, or its cse:口le into the abibient air, which alnays takes place when the electric surface density reaches a certain value.

The intensty of the efiect of at t:ansmit. ting curcuit with a free or elevatel terminal is proportionate to the çuantity of electricity displared. which is determined liy the product of the capacity of the curcuit. the pressurc. and the frequency of the currents employed. To produce an electrsalal movement of the reyuired magnitude it is desirable in charge the terminal as highly as possible. for whike a great guantity of clectricity may also be displaced bit a large s capacity clianged to low pressure, there are disudriintiges met with in many cases when the former is made two large. The chief of these are due to the fact th:at an increase of the capacity ent:als a lowering of the fre. 0 quenry of the impulses or discharges and a diminution of the energy of vibration. This will be understood wheng it is borne in mind, that a curruit with a large capacity behaves as a slackspring, whereas one with a small 6 capacity acts like a stiff spring, vibrating more ingorously. Therefore, in order to attain the h:gliest possible frequency, which for certann purposes is advantageous and. apart from that, to develor the gree:test encrey ill sach a transmitung circuit, 1 em. ploy a terminal of relatiwely sinall capracity. which I charge to as high a pressure as practicalule To acenmplish elus result I have found it imperotive to so construct the ele3 rated monduetor. that its nuter surface, on
which the electrical charge chieffy accumulates, has itself a large radius of curvature, or is composed of separate elements which, irrespective of their own radius of curvature, are arranged in close proximity to each other and so, that the outside ideal surface enveloping them is of a large radius. Evidently, the smaller the radius of curvature the greater, for a given electric displacement, will be the surface-density and, consequently, the lower the limiting pressure to which the terminal may be charged without electricity escaping into the air. Such a terminal I secure to an insulating support entering more or less into its interior, and I likerise connect the circuit to it inside or, generally, at points where the electric density is small. This plan of constructing,and supporting a highly charged conductor I have found to be of great practical importance.and it may be usefully applied in many ways.
leferring to the aceompanying drawing, the figure is a rier in elevation and part aection of an improved free terminal and 80 circuit of large surface rith supporting stricture and generating apparatus.
The terminal D ennsists of a suitably shaped metallic frame, in this case a ring of rearly circular cross section, which is cov- 8.5 erel in ith half spherical metal plates P P, thus constituting a very large conducting sirface, smonth on all places where the electric charge principally accumulates. The frome is carried by a strong platform ex. pressly prorided for safety appliances, instruments of obserration, etc., which in turn rests on insulating supports .F F. These should penetrate far into the bollow space formed by the terminal, and if the electric density at the points where they are bolted to the frame is still considerable, they may be specially prolectad by conducting hoods as H .
A part of the umprovements which form the subject of this specification, the transnitting circuit. in its general fentures, is identicul with that described and claimed in my on:iginal l’atents Nos. 645,576 and 649,621 . The circuit comprises a coil A which is in 1 close inductive relation with a primary C , and one end of which is connected to gromand-plate E., while its nther end is led flirough a separate self-induction coil B and a metallie cylinder $B^{\text {B }}$ to the terminal D. 110

The ernnection to the latter should always le, malle at. or near the center, in order to anore a armmetrical distohution of the current. as itherwise, when the frapheney is perfurmance of the apparatus maght be ampared 'The primary (: may the exorted in any desired manner, from a sumbable source of currents (i, which nay be an alternator lieing that lished. that is to say. that the terminal D is charged to the maximum pressure developed in the circuit. as I have specified in my 15 original patents iefore referred to. The ad. justments should be made with particular care when the transmitter is one of great pereer. not only on account of economy, but also in order to avoid clanger. I haveshown 20 that it is practicable to produce in a resonating circuit as $E A B B^{\prime} D$ immense electri. cal activities, measured by tens and even hundreds of thousands of horse-power, and in such a cisc. if the points of maximum 25 pressure should be shifted below the terminal D, along coil B, a ball of fire might hreak out and destroy the suppor F or any. thing elpe in the ray. For the torar ap. precintinn of the nature of this denger it 30 should be stated, that the deunructive action may t:ike place urith inconcrivible violence. This rill cease to be surprising then it is borne in mind, that the entire energy accumulated in the excited circuit, instead of re35 puiring: as under normal working conditions, cine quater of the period or more for ite transformation from static to kinetic form, may spend itself in an incomparably amaller interval of time, at a rate of many 45 millions of horse power The accident is apt to occur when, the transmatting circuit being strongly excited, the impressed ascillations upon it are caused. in any manner more or less sudden, to be more rapid than visuble to begin the adjustments with feeble and somen'hat slower impressed oscillations, strengthening and quickening them gradually; until the apparatus has been brought under perfect control To increase the safety. I proride on a coavenient place, preferably on terminal D. one or more elements er plates either of somewhat smaller radius of curvature or protruding more or less beyond the others (in which case they may be of larger radius of currature) su that, should the r -ressure rise to a value, beyond which it is not desired to go, the powerful discharge mny dant ont there and lese itself harmlessly in the air. Such a plate, performi.ig a function similar to that of a safety value on a high pressure reservoir, is indicated at V .
Stall further extending the principles underlying my invention. special reference is made to cuil B and cinductor B^{\prime} The
latter is in the form of a cylinder with smometh or polished surface of a radius much larger than that of the half spherical elenients I' P . and widens out at the bottom into a hond Hl. which sinould be slotted to 70 nond lose by eddy currents and the purpose of which wili be clear from the fore going. The roil B is wound on a frame on (Irumi l)' of insulating material, with its turns clowe together. I have discovered that 75 when so wound the effect of the sinall radius of curnature of the wire itsolf is orercome and the coil behares as a condurion of large radilis of curiature-carresponding to that of the drum. This feature is of consider. abic practical mportance and is applicable not only in this spectill instance, but generally: For example, such plates at $\mathbf{P} \mathbf{P}$. of terminal 1), though preferably of large varlius of curvature, need not be necessarily so, for provided only that the individual plates or plements of a high potential conductor on terminal are arranged in prosimaty to ench other and with their outer boundanes along an ideal sprmmetrical en- 20 veloping surface of a large radius of curtature, the advantages of the inrention will be more or less fully realized The iover ned of the coil B- \quad hich, if desired, mav be extended up to the terminal D.shouli be sompenhat below the uppermost turn of coil A. This, I find. lessens the tendency of the charge to brenk out from the wire connerting both and ω pass along the support F^{\prime}
Haring described my inrention, I cluim:

1. As a means for producing great electrical activities a resodunt circuit haring its outer conducting boundaries, which are charged to a high potential, arranged in 10 surfaces of large radii of currature so as to prevent leakage of the oscillating charge, substantially as set forth.
2. In apparatus for the transmission of èlectrical energy a circuit connected to 110 ground and to an elevated terminal and having its outer conducting boundaries, which are subject to high tension, arranged in surfaces of large radii of currature substantially as, and for the purpose described.
3. In a plant for the transmission of electricnl energy without wires, in combination with a primary or exciting circuit a secondary connected to ground and to an elerated cerminal and having-its outer conducting 120 boundaries, which are charged to a high potential, arranged in sarfaces of large radii of curvature for the purpose of preventing leakage and loss of energy, substantially as set forth
4. As a means for transmitting electrical energy to a distance through the natural anedifi a grounded resonant circuit, comprising a part upon which oscillations are impressed and another for raising the ten-

[^4]sion. having its nuter erondurting homdarims on which a high wasion thargi accumulate arratiged in surfaces of large radii of curva i:xr- sulmantially as deseribed.
\% \%. The means for producing excessive electric potentials consisting of a primary exriting circuit and a resonant secoadary having its outer condacting elements mhich are subject to high tension arranged in proximity to each other and in surfaces of large radii of curyature so as to prevent leakage of the charge and atterdant lowering of potential. substimtially as described.
6. I circuit comprising a prart upon which oscillations are impresised and unother part for raising the tension hy resonance. the latter part being supported on places of low electric density and having its outermost conducting boindaries arranfed in surfaces of large radii of curvature, as set forth.
C. In apparatus for the transmission of electrical energy without wires a grounded circuit the outer conducting elements of which have a great agyregate area and are 3 arranged in surfaces of large radii of curvature 80 as to permit the storing of a high charge at a small electric density and prevent loss through leakage, substantially as described.
8. A wireless transmitter comprising in ar combination a source of oscillations as a comlenser, a primary exriting circuit and :serondary grounded and elerated conductn: the outer conducting boundaries of which are in proximity to each other and arranged 3 in surfaces of large radii of curvature. substantially as described.
9. In apparatus for the transmission of electrical cnergy without wires an elevated conductor or nntenna having its outer high 4 potential conducting or capacity elements urranged in proximity to each other and in surfaces of large radii of curvature so as to overcome the effect of the small radius of curvature of the individual elements and 4 leakape of the charge, as set iorth.
10. A grounded rewnant transmitting circuit having its outer conductiseg boundaries arranged in surfaces of large radii of curvature in combination with an ele- s rated terminal of great surface supportcd at points of low electric density, substantially as desmibed.

NIKOLA TESLA.

Witnesses:

M. Lamson Dres,

Ricenrd Donovan.

CAPACITIES*

$B y$

Fritz Lowenstein

As the seat of energy of an electrical field is in the space outside of the charged bodies we will consider the shape and concentration of the field only; but not that of the body itself. This distinction is necessary because capacities are usually attributed to the bodies charged, whereas the energy is excluded from that space which is occupied by the body. Considering the space between two charged bodies as the only seat of energy, the expression "charged body" is best replaced by "terminal surface" of the field.

Comparing geometrically similar elements of two geometrically similar ficlds. the elementary capacities are proportional to lineal dimensions. (See Figure 1.)

Figcre 1

Extending this law over the entire field by the integrating process. we find that geometrically similar fields have capacities proportional to the lineal dimensions of the terminal surfaces. It is to be expected. therefore, that capacities expressed in dimensions of terminal surfaces should be of lineal dimensions.

That the capacity is bo meansal function of the volume of the field or of the terminal body may be easily seen from Figure 2 where a field element is increased to double the volume by adding

- Presented before The Institute of Radio Engineers, New York, December $1,1915$.
volume in the direction of the field lines and in a direction perpendicular to the lines. In the first case the capacity has been decreased whereas in the latter case increased, altho in both cases the volumetric increase is the same.

Figcre 2

It is seen. therefore, that instead of being dependent on the volume, the capacity is rather a function of lineal dimension and therefore the maximum lineal dimension predominates.

An interesting example of this predominating lineal dimension or "maximum reach" is given by the composite capacity of two wires joining at one end under various angles, as shown in Figure 3.

Figire 3

When the angle is small the composite capacity is practically the same as that of the single wire, since the addition of the second wire has not increased the maximum reach. . If the second wire B be joined to A at an angle of 180 degrees, which means in straight continuation of wire A the total capacity has
oubled, as the maximum reach now is twice that of the single wire. We notice also that by deviating wire B slightly from the traight continuation of wire A, the maximum reach of the system is not materially altered, from which one may correctly conclude that turning the wire B thru an appreciable angle b does not materially change the capacity of the system. On the other hand a great change of maximum reach is prorluced by variations of the angle when the two wires are approximately perpendicular, and in fact the capacity of the total structure is most sensitive to changes of angle between the two elements at about 90 degrees.

In Figure 4, I have given a table of capacities per centimeter of the greater lineal dimension of the different configurations.

$\square=\square$
$C=101$.
Figtraf 4

In Figure 5 the ware $A B$ is assumed to be moved by the variable abseissae x, thereby generating a conducting sheet S.

It is instructive to follow the variation of the capacity C_{x}.

At $x=H$ the capacity is that of the wire $C_{a b}$; as long as x is small the capacity is practically constant because the width of the sheet is small compared to the length $A B$ and a change of x does not involve a change of the predominating lineal dimension; however, as x increases and finally becomes greater than $A B$, it assumes the part of the predominating dimension, and, indeed, the graph shows the capacity then to be proportional to x.

Figure:

Comparing the capacities of a sphere and of a wire, it is found that the capacity of the sphere is only three or four times as great as the capacity of the wire in spite of the million times greater volune.

I have spoken of the capacities of a wire and of other bodies instead of the capacity of the field simply because I do not wish to distract attention from the familiar conceptions. Let me analyze the field shown in Figure 6, having two concentric spheres ats terminal surfaces, and defining as "volumetric energe density." the energy contained in one cubic centimeter. As the energy of a field element is made up of the product of potential along the lines of force within that element and of the number of lines traversing it. the energy of a cubic centimeter of electric field is proportional to the square of the field density. Since the field density diminishes as the square of the distance from the center of field, the volumetric energy density diminishes with the fourth power of the distance from the center. The diagram to the left in Figure 6 shows the decrease of volumetric energy density.

Of greater interest than the volumetric energy density is the lineal energy density, which may bedefined as the energy contained

Figtre 6
in a spherical layer of one centimeter radial thickness; and as the rolume of such layer increases with the siguare of the distance from the center the law follows from this fact and from the volumetric energy density law that the lineal energe density. decreases inversely as the square of the distance from the center. such dependence is graphically show to the right in Figure 6 . The shaded surface below this curve represents: the total energ. of the field and it is casily seen therefrom that the maximum energy of the field is concentrated near the smaller of the two spheres.

I have taken a simple case of a field with spherical terminal surfaces to show that the concentration of energy lies near the an:aller terminal surface. Similar considerations can be applied when substituting for this fiedd radiating threedimension:Ally. a field of bi-dimensional radiation (as that oceurring in the case of long cerindrical terminal surfaces); where, as in this instance, the bu:lk of the energy of the field is to bee found near the smaller ore of the two terminal surfaces.

In Figure 7. I have shown a field with concentric temin:al -urface (either spherical or exlindrical), and have increased the serpe of the field be reducing the size of the smaller terminal surface without, however, changing either the total number of field lines or the larger terminal surface. As the lineal energy density is very great near the smaller terminal surface, such addition of the field att that point must have materially increased the energy of the field and the change in capacity to be expected should he considerable. In fact, a considerable change in capacity of a shere is obtained by a change of its diameter.

If. in Figure 7 the larger termiral surface alone is changed,
even materially, the total energy of the field will be increased very slightly only; due to the fact, as we have seen, that the energy density near the larger terminal surface is very small. Such a small change in energy corresponds to only a small change in the capacity of the field, from which we conclude:

Figere 7

In a field having two terminal surfaces of greatly different size. a change of the smaller surface produces a great change in capacity, whereas a change of the larger terminal surface affects the capacity of the field only very slightly. The capacity of a field is, therefore, almost entirely determined by the shape of the smaller terminal surface.

That is why we may with correctress speak of the capacity of a sphere, or any other borly, without mentioning the size and shape of the other termiral surface, as long as the assumption is correct that such other termiral surface is of greatly larger dimensions:

It maly not be amiss to call your attention to the fact that the increase of field energy as illustrated in Figure 7 is accompanied be a decrease in capacity. This relation may easily be deduced from physical considerations, as well as from consideration of the mathematical expression for the capacity

$$
\left(\cdot=\begin{array}{cc}
\phi^{2} & \text { where } \phi=\text { total field lines } \\
32 \pi^{2} W & W
\end{array}\right.
$$

wherein the capacity is expressed as a property of the field alone. I ans tempted to introduce here the reciprocal value of capacity and apply to it the torm "stiffness of the field," as an increase of energe would be followed by an increase of stiffiness. I am,
however, loath to mar any additional insight which may be gained from these explanations by deviation from so familiar a term as capacity.

For a better conception of the slight change of capacity caused by a considerable increase of the larger terminal surface, I refer to Figure 7, where the difference of capacity is only 1 per cent in spite of the diameter of the larger terminal surface being increased 100 per cent. It appcars, therefore, that that part of the capacity of an antemna which is due to the flat top is not materially changed by its height above ground.

While considering the capacity of a flat top antenna to ground, it must have occurred to many engineers, as it did to me, that the statement to be found in many text books on electrostatics is rather misleading: "That the free capacity of a body considered alone in space must not be confounded with the capacity the body may have against another body corsidered as a plate condenser." This statement is quite erroneous. As the strength and direction in any point of a ficld is of single and definite value, only one clectric field can exist in a given space at a given moment. and, therefore only one value of caparity. It is incorrect, therefore, to distinguish between free capacity and condenser capacity. This clarifying statement is deemed advisable, or at least permissible, in riew of the quoted errors.

By speaking of the capacity of the field instead of that of the body, no such erroneous thought is possible, and it is clear that by free capacity of a body is meant the capacity of the ficld whose smaller terminal surface is the given borly and whose larger terminal surface is one of rastly greater dimensions. It is not essential that this greater terminal surface be located at infinite distance, becausc of the fact that even if construed as of ten times the lineal dimensions of the small surface the change caused by remoring it to an infinite distance would recult in a change in capacity of not more than one-tenth of 1 per cent.

At a time when I had not realized the singly determined value of a field capacity, I considered a comparison between free and plate capacity as shown in Figure 8, whercin to an upper dise (of which the free capacity is $\frac{2}{-r}$), was added another lower disc, therelfy forming a plate condenser. The problem arose in my mind to determine the distance of separation of the two plates so that the plate capacity would equal the free capacity of the single disc. From the well-known formulas for the dise

Figure 8
capacity and plate capacity; it would appear that the two were equal at a distance equal to $d=\overline{\bar{\delta}} r$, and I must confess that I had quite a struggle to decide whether in speaking of the capacity of the upper plate I would not have to add the two capacities. While such a mistake need hardly be called to the attention of the majority of engineers, I do not hesitate to make mention of it for the bencfit of even the fer students who might gain therefrom.

The advent of the aeroplane has opened another field, for radio communication. Whereas in the static field of an antenna, one terminal surface is artificial and the other provided by the surrounding ground, both terminal surfaces in an aeroplane outfit have to be artificial and are, therefore, open to design. The question arises in such a radio oscillator as to how much may be gained in energy for each single charge by increasing that one of the two terminal surfaces which consists of a dropped wire. The arrangement is sisown in Figure 9. It is evident that

Figure 9
as long as the dropped wire is of smaller dimensions than the electrostatic counterpoise provided on the aeroplane, an increase in length of such dropped wire will materially increase the capacity of the field and, therefore, the energy per charge (as we may conclude by analogy from Figure 7). As soon, however, as the dropped wire is materially longer than the conductor on the aeroplane it assumes the role of the larger terminal surface of the field, and any further increase of its length will not materially contribute to an increase of electrostatic capacity nor of the energy per unit charge.

Figure 10 shows the function of the volumetric and lineal energy density in a field whose smaller terminal surface is a long cylinder. Such a field, radiating bi-dimensionally only, shows an energy concentration not so accentuated as that found in the

Figure 10
tri-dimensionally radiating field; but considering the larger terminal surface of a diameter ten times that of the smaller surface, the raparity would only be changed 1 per cent by increasing the larger terminal surface infinitely.

In all cases, therefore, where the larger terminal surface does not come closer at any point than (say) ten times the corresponding dimension of the smaller terminal surface, we need not be concerned with the actual shape of the larger terminal surface when we determine the seat of energy; the capacity and the configuration of the field lines emanating from the smaller surface. It will be seen, therefore, that from the flat top of an antenna, lines emanate almost symmetrically both upwards and downwards as though the larger terminal surface were one-
surrounding the antenna symmetrically on all sides, in spite of the fact that the ground is located entirely at the bottom of the antenna. This is clearly illustrated in Figure 11.

By integrating the lineal energy density of a three-dimensionally radiating field between the radius of the smaller sphere

and that of the larger splare, we can find the energy of such a field: whereby the capacity is determined. The lineal energy density follows the law of $\frac{1}{r^{-}}$, and its integral is proportional to ${ }_{r}$; and consequently the ceapacity of the field varies as r.

We have deduced, therefore, the capacity of a sphere from properties of the fied alone, considering the sphere as a terminal surface only.

In deducing similirily the rapacity of the wire from properties of the field alone. we have to start with the bi-dimensionally radiating field the lineal energy density of which follows the law $\frac{1}{r}$ as we have seen. The integral of such function is of logarithmic nature. as indeed is the capacity of the wire.

I wish to call your attention to the fact that in a sphere segments of the same projected axial length contribute equally to the capacity of the sphere, as shown in Figure 12.

If a charge werr made to enter a sphere and traverse the sphere in the direction of a diameter, the sphere as a conductor would behave like a straight piece of wire of uniform lineal capacit.: This fact was first recognized, to my knowledge, by

Mr. Nikola Tesla, and [expect to come back to the behavior of a sphere as a conductor of radio frequency currents at some later date.

The study of capacities of composite bodies is most instructive and conducive to a clear conception of capacity. Let. as in Figure 13, a number of small spheres of radius be so arranged as to cover completely the surface of the larger sphere, the radius R of which be 100. If each one of the

Figiche 13
31.40 smaller spheres rould be counted at its full value of capacity, the capacity of the composite body would be 31,400 ; as a matter of fact, however. it is not more than radius R of the larger sphere, that is 100 . Indeed, the configuration of the electric field F could not have changed materially by the arrangement of the small spheres, and the capacity clearly presents itself as a property of the configuration of the fiedd lying outside of the enveloping surface of the composite structure.

Capacity may play a part in the conduction of electricity thru liquids and gases. Let us assume a series of spheres in lincal arrangement as shown on Figure 14.

As long as the distance between the spheres is great compared to the diameter of the spheres, each sphere will retain its full capacity as given by its radius. By decreasing the distance

Figure 14
between spheres the individual capacities of the spheres decrease, because of the negative eapacity coefficients. If such approximation be carried to the point of contact between the spheres, the capacity of each individual sphere would be reduced to approximately $\frac{1}{s}$ of the original capacity. If such a ruw of splurere were conceived as freely movable, so as to enable each sphere to make contact with a plate P, which is kept charged to a certain potential, then the charges carried away by the spheres after contact with the plate mould be proportional to the full capacity of each sphere as long as the spheres are far apart, and would he only $\frac{1}{g}=\frac{1}{2.718}$ th part of such maximum charge when the spheres arc in contact. As we assumed the plate P to be maintained at a certain potential by an outside source of electricity, the ronvection current represented by the departing charges of the spheres would vary approximately in a ratio of 2.71 to $\overline{1}$:

In the passage of electricity thru an electrolyte, the molecular conductivity has been found to be the same for all electrolytes, and varying only with the concentration of the solution; the molecular conductivity being approximately 2.5 times as great in the very dilute solution as in the concentrated solution.

I wish to call your attention to the striking similarity between the ratio of conductivity experimentally determined in elec-
trolytes of small and large concentration and the ratio of conductivity of the row of spheres where the spheres are far apart or close together. I do not pretend at this moment that a

plausible modification of the theory of conduction thru electrolytes and gases can be based on such a coincidence; and in fact, assumptions would have to be mode. For example, a lineal arrangement of the ions in the clirection of the static field impressed on the electrolyte or on the gas must be assumed.

But the fact that such ratio in the case of the spheres is deduced from geometrical considerations alonc. coupled with the fact that in electrolytes the same ratic follows from purely geometrical considerations, is sufficient to warrant further thought. I do not hesitate to bring this interesting coincidence to your knowledge, with the hope that other physicists may carry on investigations
in the same direction. I have said that the molecular conductivity of electrolytes arose from geometrical considerations only, and I think it advisable to call your attention to the foundation of such a statement. While it is true that the conductivity of different electrolytes varies considerably, it has been found that the molecular conductivity is the same for all electrolytes. The similar behavior, of the same number of molecules, independently of the weight of the molecule, therefore reduces the phenomenon to a purely geometric basis.

SUMMARY: Considering that electrostatic energy is actually in the space surrounding a charged body, the latter is called a "terminal surface." It is shown that capacity is predominantly a function of the maximum lineal dimension of the terminal surface. The volumetric and lineal energy densities in the feld are defined and studied in a number of cases. It is proven that the capacity between two terminal surfaces is greatly affected by changing the lineal dimensions of the smaller terminal surface, but not so for changes of the larger. Certain current errors in connection with "mutual capacity" are considered.

The practical applications to a radio antenna and to aeroplane counterpoises are given.

When a charge traverses a sphere, entering parallel to a diameter, the sphere behaves as a conductor of uniform lineal capacity.

Applications of the theoretical considerations are also given in connection with the conductivity of concentrated and dilute electrolytes.

[^0]: *It should be noted that the primary acts as a halfwave, therefore exhibiting no impedance transforming properties.

[^1]: ＊EMF then also becomes greater farther from terminal，possible reaching astronomical magnitudes．

[^2]: *The theories of radio at that time considered transmission thru existing lines of force or "ether tensions".

[^3]: * Steinmetz's analysis modified.

[^4]: 70

